晚上好,植物提取物百科网!

酶标抗作用(抗体酶作用)

责编:网友投稿 浏览

酶标抗作用(抗体酶作用)

抗体酶作用

赖氨酸是人体必须氨基酸,可以建立肌肉组织,使得创伤得到恢复,有效促进钙的吸收。而且可以促进身体产生抗体酶和激素,

赖氨酸可以与其他营养成分形成胶原蛋白,胶原蛋白分布与于身体的各个组织。例如:结缔组织、骨骼、肌肉、肌腱、关节软骨等。

抗体酶作用内切位点

分子克隆技术步骤

在分子水平上提供一种纯化和扩增特定DNA片段的方法。常含有目的基因,用体外重组方法将它们插入克隆载体,形成重组克隆载体,通过转化与转导的方式,引入适合的寄主体内得到复制与扩增,然后再从筛选的寄主细胞内分离提纯所需的克隆载体,可以得到插入DNA的许多拷贝,从而获得目的基因的扩增。

克隆在生物学中其名词含义系指一个细胞或个体以无性繁殖的方式产生一群细胞或一群个体,在不发生突变的情况下,具有完全相同的遗传性状,常称无性繁殖(细胞)系;其动词(clone,cloned,cloning)含义指在生物体外用重组技术将特定基因插入载体分子中,即分子克隆技术。

将DNA片段(或基因)与载体DNA分子共价连接,然后引入寄主细胞,再筛选获得重组的克隆,按克隆的目的可分为DNA和cDNA克隆两类。

cDNA克隆是以mRNA为原材料,经体外反转录合成互补的DNA(cDNA),再与载体DNA分子连接引入寄主细胞。每一cDNA反映一种mRNA的结构,cDNA克隆的分布也反映了mRNA的分布。特点是:

①有些生物,如RNA病毒没有DNA,只能用cDNA克隆;

②cDNA克隆易筛选,因为cDNA库中不包含非结构基因的克隆,而且每一cDNA克隆只含一个mRNA的信息;

③cDNA能在细菌中表达。cDNA仅代表某一发育阶段表达出来的遗传信息,只有基因文库才包含一个生物的完整遗传信息。

1.方法:

(1)DNA片段的制备:常用以下方法获得DNA片段:①用限制性核酸内切酶将高分子量DNA切成一定大小的DNA片段;②用物理方法(如超声波)取得DNA随机片段;③在已知蛋白质的氨基酸顺序情况下,用人工方法合成对应的基因片段;④从mRNA反转录产生cDNA。

(2)载体DNA的选择:

①质粒:质粒是细菌染色体外遗传因子,DNA呈环状,大小为1-200千碱基对(kb)。在细胞中以游离超螺旋状存在,很容易制备。质粒DNA可通过转化引入寄主菌。在细胞中有两种状态,一是“紧密型”;二是“松驰型”。此外还应具有分子量小,易转化,有一至多个选择标记的特点。质粒型载体一般只能携带10kb以下的DNA片段,适用于构建原核生物基因文库,cDNA库和次级克隆。

②噬菌体DNA:常用的λ噬菌体的DNA是双链,长约49kb,约含50个基因,其中50%的基因对噬菌体的生长和裂解寄主菌是必需的,分布在噬菌体DNA两端。中间是非必需区,进行改造后组建一系列具有不同特点的载体分子。λ载体系统最适用于构建真核生物基因文库和cDNA库。

M13噬菌体是一种独特的载体系统,它只能侵袭具有F基因的大肠杆菌,但不裂解寄主菌。M13DNA(RF)在寄主菌内是双链环状分子,象质粒一样自主制复,制备方法同质粒。寄主菌可分泌含单链DNA的M13噬菌体,又能方便地制备单链DNA,用于DNA顺序分析、定点突变和核酸杂交。

③拷斯(Cos)质粒:是一类带有噬菌体DNA粘性末端顺序的质粒DNA分子。是噬菌体-质粒混合物。此类载体分子容量大,可携带45kb的外源DNA片段。也能象一般质粒一样携带小片段DNA,直接转化寄主菌。这类载体常被用来构建高等生物基因文库。

(3)DNA片段与载体连接:DNA分子与载体分子连接是克隆过程中的重要环节之一,方法有:①粘性末端连接,DNA片段两端的互补碱基顺序称之为粘性末端,用同一种限制性内切酶消化DNA可产生相同的粘性末端。在连接酶的作用下可恢复原样,有些限制性内切酶虽然识别不同顺序,却能产生相同末端。②平头末端连接,用物理方法制备的DNA往往是平头末端,有些酶也可产生平头末端。平头DNA片段可在某些DNA连接酶作用下连接起来,但连接效率不如粘性末端高;③同聚寡核苷酸末端连接。④人工接头分子连接,在平头DNA片段末端加上一段人工合成的、具有某一限制性内切酶识别位点的寡核苷酸片段,经限制性内切酶作用后就会产生粘性末端。

连接反应需注意载体DNA与DNA片段的比率。以λ或Cos质粒为载体时,形成线性多连体DNA分子,载体与DNA片段的比率高些为佳。以质粒为载体时,形成环状分子,比率常为1∶1。

(4)引入寄主细胞:常用两种方法:①转化或转染,方法是将重组质粒DNA或噬菌体DNA(M13)与氯化钙处理过的宿主细胞混合置于冰上,待DNA被吸收后铺在平板培养基上,再根据实验设计使用选择性培养基筛选重组子,通常重组分子的转化效率比非重组DNA低,原因是连接效率不高,有许多DNA分子无转化能力,而且重组后的DNA分子比原载体DNA分子大,转化困难。②转导,病毒类侵染宿主菌的过程称为转导,一般转导的效率比转化高。

(5)克隆的选择:

①直接筛选:有些载体带有可辨认的遗传标记,能有效地将重组分子与本底区分。例如:有些λ噬菌体携带外源基因后形成的噬菌斑就会从原来的混浊变为清亮;还有些载体分子携带外源基因后,形成的菌落或噬菌斑的颜色有明显变化,如蓝色变为无色;有些λ噬菌体能侵染甲菌而不能侵染乙菌,携带外源DNA片段后便能侵染乙菌,因此乙菌释放的噬菌体均为重组分子。

②间接筛选:有引起载体分子带有一个或多个抗药性标记基因,当外源DNA插入到抗药基因区后,基因失活,抗性消失。如一质粒有A和B两个抗药性基因,当外源基因插入到B基因区后,便只抗A药而不抗B药。因此能在A药培养基上正常生长而不能在B药培养上生长的便是重组分子。

③核酸杂交:广泛用于筛选含有特异DNA顺序的克隆。方法是将菌落或噬菌斑“印迹”到硝酸纤维膜等支持物上,变性后固定在原位,然后与标记的核酸探针进行杂交。阳性点的位置就是所需要的克隆。

④免疫学方法:如果重组克隆能在宿主菌中表达,就可以用特异的蛋白质抗体为探针,进行原位杂交,选择特异的克隆。

2.重要意义与应用:

分子克隆技术是70年代才发展起来的,它的出现和应用开辟了分子遗传学研究的新领域,打开了人类了解、识别、分离和改造基因,创造新物种的大门。它的成就对于工业、农牧业和医学产生深远影响,并将为解决世界面临的能源、食品和环保三大危机开拓一条新的出路。

在医学方面,利用分子克隆技术已将胰岛素,人、牛和鸡的生长激素、人的干扰素、松驰素、促红细胞生长激素、乙型肝炎病毒抗原和口蹄疫病毒抗原的基因制成工程菌,利用发酵工业进行了大规模生产。还可提高微生物本身所产生的蛋白酶类和抗生素类药物的产量。

在基因治疗方面。通过遗传工程看到癌细胞具有逆转为正常细胞的可能性,例如SV40病毒引起的小鼠肿瘤细胞,在温度高时可逆转为正常细胞。为治疗半乳糖血症,用带有大肠杆菌乳糖操纵子的λ噬菌体去感染半乳糖血症患者的离体培养细胞,发现这种细胞的半乳糖苷酶达到了正常水平,并确实能代谢半乳糖。

在工业生产方面,以分子克隆技术为主体的基因工程、细胞工程、酶工程和发酵工程,四者紧密联系、常综合利用。许多化学试剂如丙烯酸、己二酸、乙二醇、甲醇、环氧乙烷、乌头酸和水杨酸等都可能利用分子克隆技术得到产品。在环境保护方面,人们根据需要进行基因操作,将某种微生物的基因转入另一微生物,创造一些对有害物质降解能力更强的新菌种,以分解工业污水中的有毒物质。在食品工业方面,细菌可为人类生产有价值的蛋白质、氨基酸和糖等。

在农业生产方面,植物遗传工程对提高农作物的产量、培育新的农作物品种提供了可能。有许多外源基因导入植物获得成功。

酶和抗体有什么关系

酶是没有生命的。活性与生命是两回事。 单独的“活性”一词是个泛指,都算不上专业词汇。它大约是指发生某种反应的能力。比如酶的活性,指的是酶催化某个反应的能力。抗体的活性,指的是与抗原结合的能力。对于催化来说,不仅酶有催化活性,铁粉也能催化过氧化氢分解,也有活性,总不能说铁粉也是生命吧。 生命有确切的定义,有其基本特征,比如新陈代谢、遗传变异、应激性等。酶不具备这些特征,它只是生命的一种组成成分而已。

抗体酶有何特性

抗体酶,又称催化抗体,是一类具有催化能力的免疫球蛋白,即通过一系列化学与生物技术方法制备出的具有催化活性的抗体,它既具有相应的免疫活性,又能像酶那样催化某种化学反应。

1946年,鲍林(Pauling)用过渡态理论阐明了酶催化的实质,即酶之所以具有催化活力是因为它能特异性结合并稳定化学反应的过渡态(底物激态),从而降低反应能级。1969年,杰奈克斯(Jencks)在过渡态理论的基础上猜想:若抗体能结合反应的过渡态,理论上它则能够获得催化性质。抗体酶具有典型的酶反应特性,与配体结合的专一性,包括立体专一性,抗体酶催化反应的专一性,可以达到甚至超过天然酶的专一性,还具有高效催化性。

抗体酶功能

酶的化学本质是蛋白质,少部分是核糖核酸,是活细胞合成的,降低反应所需活化能,加快反应速率,作用后不失活,动物激素本质有蛋白质,多肽,氨基酸的衍生物,类固醇等,动物细胞合成,调节生命活动,具体作用大不相同,作用后失活,神经递质本质一般是乙酰胆碱,也有别的,作用后失活,抗体本质蛋白质,浆细胞产生,作用后失活,体液免疫效应阶段起作用

酶标抗体作用

免疫荧光技术是用荧光素标记的抗体或(抗原)分子检测相对应的抗原或抗体分子的技术。

  (1)直接荧光法:把荧光素标记的抗体与待检标本(细胞悬液、细胞涂片或组织切片)相互作用,洗去未结合荧光标记抗体,在荧光显微镜下观察,有荧光的部分为阳性。

  (2)间接荧光法:将特异性抗体(一抗)和待检标本(细胞悬液、细胞涂片或组织切片)相互作用后加入荧光素标记的一抗的抗体(二抗)显示结果。

  免疫荧光法在病原体的诊断、细胞表面标志的鉴定等方面用途广泛。流式细胞仪(FACS)是用于分离、鉴定荧光素标记单克隆抗体识别细胞的仪器。

 

抗体酶作用机理

酶联法的全称是酶联免疫吸附测定法,它的原理是使抗体和酶复合物结合,再通过显色来进行检测。酶联法使抗体或者抗原结合到某种固相载体的表面,并且使其保持免疫活性。酶联法要采用血清来进行检测,检测准确度非常高。

抗体是酶吗

答案D

由于S元素通常是蛋白质特征元素,与抗原特异性结合的抗体、细胞间相互识别的糖蛋白、获得粘性末端的限制酶均是蛋白质,携带氨基酸进入核糖体是转运RNA,所以D选项符合题意。

抗体酶的应用

转基因植物抗体是通过基因工程技术将编码全抗体或抗体片段的基因导人植物,并在植物中表达或生产的具有免疫活性的抗体或其功能片断。

这是抗体基因工程的一项新技术,在许多生产领域内具有应用价值。人类既可以以植物为生物反应器异源表达和生产具有药用及商业价值的抗体;也可直接利用抗体在植物体中进行免疫调节,以研究植物生理代谢机制,或增加植物抵抗病虫害的能力。   在生物医药领域的应用   从经济效益和安全角度考虑,利用植物表达抗体较其他体系有着不可比拟的优越性,因此植物抗体倍受国际生物医药产业的青睐。植物抗体的医疗用途主要体现在以下几个方面:诊断、防治蛀牙、孢疹治疗、肿瘤治疗等。已有4种植物抗体展示出在人类疾病治疗上具有潜在应用价值。第一种是用烟草表达的引起龋齿的链球菌表面抗原的嵌合抗体免疫球蛋白IgG/A,在预防病菌定植上和杂交瘤生产的抗体作用一样,且没有发现人体产生抗鼠抗体,应用安全。这是唯一开始大规模生产的植物抗体,已经进入二期临床。第二种植物抗体是利用大豆表达的人的抗单纯疱疹病毒(HSV)抗体,在小鼠模型中能预防HSV-2的传播,和细胞培养生产的单克隆抗体作用基本一致。第三种是利用小麦和水稻表达的针对癌胚抗原(Carcinoembryonic antigen,CEA)的抗体,可用于肿瘤治疗研究。第四种是通过病毒载体在烟草中瞬时表达得到的淋巴瘤治疗用独特型疫苗抗体。还有报道称转基因烟草产生的狂犬病抗体能够保护仓鼠免受致命剂量的丛林狼狂犬病病毒的侵袭,且在人工养殖细胞试验中能对多种狂犬病病毒起到抑制作用,这为狂犬病的治疗带来了新的希望。   此外,近几年,植物作为外源蛋白的天然生物反应器,生产可食性疫苗和植物抗体的研究,也成为新的热点并取得可喜进展。   在农业领域的应用   ①介导植物自身免疫:植物中表达的重组抗体除了直接用于临床外,也可用于植物体自身对环境胁迫的反应。如介导植物抗病毒、细菌、真菌及线虫等,是植物分子育种的又一途径。Tavladoraki等把编码对AMCV病毒有作用的单链抗体(scFv)的基因导人烟草细胞,获得的转基因植株抗AMCV侵染,表现为发病率降低,发病延缓。这一研究结果使人们看到了利用“胞内抗体免疫技术”防止病毒及害虫危害的曙光。而Van Engelen等和De Wilde等分别在烟草和拟南芥的胞间表达全长抗体的成功则给人们展示了利用抗体防止病原菌危害的可能性。   ②调节植物代谢:20世纪90年代以来,通过基因工程手段调控植物的研究逐渐兴起,并被预言为今后几年的一个重点发展领域。抗体分子可通过与被修饰的目标分子特异结合稳定或阻断其生物活性。若被修饰的分子是代谢中的关键酶,可改变植物的相关代谢途径,调控植物的生长发育,或使植物高水平积累某一有价值产物。目前,调控代谢的基因工程策略主要有两种,一是通过反义RNA技术抑制某一内源基因的表达;

二是通过导入异源基因促使某一产物的形成和累积。胞内抗体技术是继反义RNA技术之后的一种新型代谢调控技术,它利用重组DNA技术,在植物细胞内空间特异性表达有活性的抗体分子,从而特异性干扰或阻断某些生物大分子的合成、加工和分泌过程,进而导致细胞一系列生物过程的改变。

关注我们

微信

网站也是有底线的

植物提取物百科 全球最大的植物提取物中文网 stephenture@qq.com

Copyright © 2020-2024 zwwiki.Cn All Rights Reserved

document.write("")