首先,生长素能促进植物生长,这也是生长素名字的由来。曾经有人发现,植物在授粉以后,子房中的生长素含量会急剧上升。子房中的生长素含量升高有什么作用呢?人们做了这样一个小实验:在果实发育开始时,除去果实的全部种子,那么果实就会停止生长,乃至脱落;如果种子去除得不是很彻底,还剩余一部分种子,那么就只有这部分种子周围的果实继续膨大。这个实验说明,植物的种子可以产生生长素以促进果实的发育。
其次,生长素有一种怪脾气,那就是它在植物体内不是越多越能促进植物生长。研究表明,植物体内生长素浓度较低时会促进植物的生长,在浓度较高时反而会抑制植物的生长。侧柏或柳树的顶芽产生的生长素有一部分运输到了侧芽部分,使得侧芽处的生长素浓度保持在较高的水平,侧芽便停止生长;而顶芽的生长素维持在一个合适的水平,顶芽便优先生长。这种现象在一些植物中很普遍,人们称之为“顶端优势”现象。农民在修整棉株时要掐顶去心,就是要去除顶芽生长素的压力,促进侧芽生长,以期长出更多的果枝、结出更多的棉桃,提高棉花的产量。
此外,生长素还有能够促进扦插的枝条生根的本领。在园艺上,扦插是进行植物繁殖的一种常用的方法。在实践中经常会遇到一些困难,比如茶花一类的枝条扦插后很难生根,造成成活率很低。怎么解决这个问题呢?别着急,如果你把茶花枝条的下端浸泡在一定浓度的生长素溶液中处理一段时间,然后再拿去扦插到松软的细沙中,过不了几周,你就会发现,难以生根的茶花枝条在其基部也乖乖地长出了新根。
植物生长素自从科学家研究发现之后,这种物质可以刺激植物生长,具有一定的向光性,比如向日葵的原理。
2.
这种物质还能调节植物的生长,促进植物发芽,但是也能抑制植物发芽,具有两面性
1、溶液喷洒:溶液喷洒是植物激素等应用中常用的方法。根据应用目的,可以对叶、果实或全株进行喷洒,喷洒时要均匀,溶液用量以喷洒部位湿润为度。一般宜于傍晚或晨露已干时进行,雨前或烈日下均不宜喷洒。根据药效的长短和需要,可进行一次或多次喷洒。
2、溶液点滴:此法多用于处理植物茎顶端生长点,花朵或休眠芽等。用生长素或赤霉素溶液点滴茎生长点,促进顶端组织的伸长作用比喷洒法更明显。此法可以定量应用药剂,剂量比较精确,适用于科学研究,在生产中也用于一些名贵树木和观赏植物的繁殖和培育。
3、溶液浸泡:这是最早应用于木本植物扦插繁殖的一种方法。用于吲哚乙酸、萘乙酸浸泡插条促进生根。处理时,先向盛器内倾入一定浓度的上述激素溶液,深约1.6厘米,然后把插条的形态学下端浸泡于溶液之中,经过一定时间取出,扦插于沙盘中,促进其生根。溶液浸泡分慢浸和快浸两种。慢浸法采用浓度低的水溶液(10-100ppm)处理12-24小时,然后取出插条。快浸法采用浓度高的50%酒精溶液(1000ppm以上),插条处理5分钟即可取出,待酒精挥发后扦插。应用快浸法比慢浸法方便,吸收的剂量也比较均匀。同时可避免慢浸时由于叶片水分蒸发和温度、湿度等条件的变化,影响插条对药剂吸收的缺点。另外,也常用浸泡法浸果、浸种,包括种子和种薯等。例如,用乙烯利水溶液浸果以催熟番茄和其他水果。用赤霉素溶液浸泡黄豆和绿豆以促进豆芽生长。用矮壮素浸种来增加小麦分蘖。用赤霉素浸泡马铃薯块茎打破夏收马铃薯的休眠等。
4、溶液涂抹:此法用于植物的某一器官如叶、芽、茎及枝条的切口等,以观察某一激素对植物产生的某些生理作用。例如,用细胞分裂素溶液涂于叶片的一边,可以观察到对延缓叶片衰老的作用。溶液涂抹药效维持的时间较短,不宜在大田中应用。
生长素是一种植物激素,它的作用表现在对植物生长的促进,这种促进是促进细胞的伸长生长,并不是促进细胞分裂。
植物表现出向光性,就是由于单侧光导致生长素分布不均匀,向光一侧分布的少,伸长生长的慢;背光一侧分布的多,伸长生长的快,从而表现出向着光源生长。 当然,其作用具有两重性,具体为高浓度抑制生长,低浓度促进生长。
生长素促进植物生长的原理是:在细胞水平上,生长素可刺激形成层细胞分裂;刺激枝的细胞伸长、抑制根细胞生长;促进木质部、韧皮部细胞分化,促进插条发根、调节愈伤组织的形态建成。
在器官和整株水平上,生长素从幼苗到果实成熟都起作用。
生长素控制幼苗中胚轴伸长的可逆性红光抑制;当吲哚乙酸转移至枝条下侧即产生枝条的向地性。
当吲哚乙酸转移至枝条的背光侧即产生枝条的向光性;吲哚乙酸造成顶端优势;延缓叶片衰老;施于叶片的生长素抑制脱落,而施于离层近轴端的生长素促进脱落;生长素促进开花,诱导单性果实的发育,延迟果实成熟。
多集中在生长旺盛的部位,如:胚芽鞘、芽、和根顶端的分生组织、形成层、发育中的种子和果实等处。
生长素(auxin)是一类含有一个不饱和芳香族环和一个乙酸侧链的内源激素,英文简称为IAA,其化学本质是吲哚乙酸。另外,4-氯-IAA、5-羟-IAA、萘乙酸(NAA)、吲哚丁酸等为类生长素。生长素是第一个被发现的植物激素。
生长素中最重要的化学物质为3-吲哚乙酸。生长素有调节茎的生长速率、抑制侧芽、促进生根等作用,在农业上用以促进插枝生根,效果显著。
顶芽产生的生长素向下运输抑制了侧芽的发育,侧芽的发育受到抑制则成枝减少,相应的侧芽开花数与挂果数也减少,这样生长素就起到了疏花疏果的作用。具体作用方式可以参见顶端优势。植物表现出的顶端优势——植物的顶芽优先生长而侧芽受到抑制的现象,就是因为顶芽产生的生长素向下运输,大量地积累在侧芽部位,使侧芽的生长受到抑制的缘故。如果摘掉顶芽,侧芽部位的生长素浓度降低了,侧芽所受到的抑制作用就会解除,不久,侧芽就可以发育成枝条了。
生长素是一种植物激素,它的作用表现在对植物生长的促进,这种促进是促进细胞的伸长生长,并不是促进细胞分裂。植物表现出向光性,就是由于单侧光导致生长素分布不均匀,向光一侧分布的少,伸长生长的慢;背光一侧分布的多,伸长生长的快,从而表现出向着光源生长。
当然,其作用具有两重性,具体为高浓度抑制生长,低浓度促进生长。
细胞分裂素:其代号为CTK。
细胞分裂素是一类具有腺嘌呤环结构的植物激素。其共同特点是在腺嘌呤环的第6位置上有特定的取代物。它们的生理功能突出地表现在促进细胞分裂和诱导芽形成。
1948年美国斯科格和中国崔澂在烟草组织培养中发现腺嘌呤能诱导烟草髓组织分化出芽。1955年米勒等以酵母脱氧核糖核酸的降解物和鲱精子的脱氧核糖核酸中分离纯化得到促进细胞分裂的物质,定名为激动素(KT),其化学结构为6-呋喃甲基腺嘌呤,又称糠基腺嘌呤。1963年莱瑟姆从受精11~16天的玉米嫩籽中分离出第一种存在于高等植物中的天然细胞分裂素,定名为玉米素(Z)。目前已从高等植物中得到20几种腺嘌呤衍生物。如二氢玉米素、玉米素核苷(ZR)和异戊烯基腺嘌呤。近代人工合成了多种类似物质,如6-苄基腺嘌呤(BA)、四氢吡喃苄基腺嘌呤(PBA)等。它们通称为细胞分裂素(CTK)。
根部分生组织(根尖)合成细胞分裂素最活跃,通过木质部的长距离运输从根到茎。幼叶、芽、幼果和正在发育的种子中也能形成细胞分裂素,玉米素最早就是从未成熟的玉米籽中获得的。细胞分裂素可通过转移核糖核酸(tRNA)的裂解产生,也可以由甲羟戊酸盐和腺嘌呤为前体合成。
细胞分裂素有多种生理效应。其生理效应表现为:
第一、 促进细胞分裂,细胞分裂素的主要生理功能就是促进细胞的分裂。生长素、赤霉素和细胞分裂素都有促进细胞分裂的效应,但他们各自所起的作用不同。生长素只促进核的分裂,而与细胞质的分裂无关。而细胞分裂素主要是对细胞质的分裂起作用。
第二、 促进芽的分化。促进芽的分化是细胞分裂素重要的生理效应之一,有些离体叶细胞分裂素处理后主脉基部和叶缘都能产生芽。
第三、 促进细胞扩大。细胞分裂素可促进一些双子叶植物如菜豆、萝卜的子叶或叶圆片扩大,这种扩大主要是因为促进了细胞的横向增粗。
第四、 促进侧芽发育,消除顶端优势。细胞能解除由生长素所引起的顶端优势,促进侧芽生长发育。如豌豆苗若以细胞分裂素溶液滴加于叶腋部位,腋芽则可生长发育。
第五、 延缓叶片衰老。如果在离体叶片上局部涂以细胞分裂素,则叶片其余部位变黄衰老时,涂抹激动素的部位仍保持鲜绿。由于细胞分裂素有保绿及延缓衰老等作用,故可用来处理水果和鲜花等以保鲜、保绿,防止落果。例如用细胞分裂素处理柑橘幼果,可显著防止落果,而且果梗加粗,果实浓绿,果个也比对照显著增大。
第六、 打破种子休眠。需光种子,如莴苣和烟草等在黑暗中不能萌发,用细胞分裂素则可代替光照打破这类种子的休眠,促进其萌发。
生长素的两重性是指生长素促进顶芽生长而抑制侧枝生长。大型乔木中的裸子植物和部分双子叶植物,受其影响较重,所以顶芽生长快,而侧枝受到不同程度抑制生长较慢。
植物激素是植物细胞接受特定环境信号诱导产生的微量有机化合物,低浓度时就能调节植物的生理反应和细胞内的生化过程。
植物激素在植物生长发育的几乎所有过程都起了重要的调控作用,体现在细胞分裂与伸长、组织与器官分化、影响植物发芽与生根、向性(tropism)、性别决定、开花与结实、成熟与衰老、休眠与萌发、叶片和果实脱落、气孔开闭以及离体组织培养等方面。
目前的植物激素包括生长素(auxin)、细胞分裂素(cytokinins)、赤霉素(gibber ellis)、脱落酸(abscisic acid)、乙烯(ethylene)、茉莉酸(Jasmonates)和油菜素内酯(brassinosteroids)等。此外,其他如多胺类( polyamines)、水杨酸( salicylic acid)、开花素( florigen)、光和一氧化氮(NO)等都和植物生长调节有关,但是尚未证实为植物激素。
相对于动物激素,植物激素多为简单的小分子物质,而动物激素多为小的多肽和小分子物质;植物激素不受到中枢调控,而动物激素受中枢调节;植物激素不经由循环系统运输,而动物激素由特殊腺体制造后由血液循环系统运输至特定细胞作用。
植物的生长发育受到外在和内在因素调节,这些因素包括外界环境的变化以及内源的遗传因子和植物激素( plant hormones),而遗传因子的调控多经由植物激素的作用得以实现。植物激素的作用可以是单一的,也可以是复合的,也就是某些激素通过互作(cross talk)或和其他信号途径的相互作用,对植物的生长发育与分化起到调控作用。
生长素的作用
植物激素对于植物生长发育的作用往往不是单一的,也通过与其他激素的共同作用调控植物生长,这在生长素的作用中尤其得到体现。简单归纳生长素的作用为:
①细胞增大——促进细胞伸长造成茎的延伸。
②细胞分裂——促进形成层(cambium)细胞分裂,以及和细胞分裂素(cytokinins)共同作用在组织培养中促进细胞分裂。
③维管组织分化——促进韧皮部(phloem)和木质部(xylem)的分化。
④诱导根的形成——促进扦插苗生根,并在组织培养中促进根的分化。
⑤向性反应——生长素介导枝条和根部对于重力和光所产生的向性反应,在这里必须强调的是内源生长素和外施生长素有着不同的向性反应特征。
⑥顶端优势——由顶端供应的生长素抑制侧芽的生长。
⑦叶片和果实脱落——生长素可以抑制或和乙烯共同作用促进果实脱落。
⑧叶片老化——生长素延缓叶片老化。
⑨果实结实和生长——某些植物的果实可以经由生长素的诱导而结实生长。
⑩果实成熟——延缓果实成熟。
⑪开花——促进凤梨属植物开花。
⑫促进花器官生长
⑬和乙烯共同作用促进雌雄异花植物(dioecious)的雌花分化。
⑭同化物运送(assimilate partitioning)——经由韧皮部运送,将同化物质送至生长素含量较高的部位。
细胞分裂素的作用
依据细
胞种类及植物种类不同,细胞分裂素存在着一些不同的作用,可以归纳为:
①促进细胞分化——外源施加的细胞分裂素在有生长素存在的条件下能够促进组织培养的细胞分裂,植物冠瘤(crown gall)的内源细胞分裂素也能够促进细胞分裂。
②组织培养中促进形态分(morphogenesis),包括促使组织培养和冠瘤形成芽和枝条;对于藓苔(moss),细胞分裂素促使芽的形成。
③促进侧芽形成——打破顶端优势。
④增进细胞增大而达到叶片扩展的效果。
⑤对于某些物种能够促进气孔张开。
⑥刺激叶绿素合成而促进白色体(etiplast)发育为叶绿体。
⑦延迟老化。
赤霉素的作用
赤霉素对于植物的作用依植物物种不同而有差异,大致可以归纳为:
①促进细胞分裂及延伸从而使植物茎延伸。
②长日照下促进开花抽墓(bolting)。
③对于某些需要经过层积处理(stratification)或是光照才能够发芽的植物种子有打破种子休眠的作
用。
④禾谷类种子发芽时促进糊粉层a-淀粉酶(a-amylase)的生成以转化胚乳养分供给萌发幼苗使用。
⑤诱导雌雄异株植物的雄花形成。
⑥促进单性果实(parthenocar pic fruit)的形成。
⑦延缓叶片以及芸香科果实的老化。
脱落酸的作用
根据植物对脱落酸的生理反应,脱落酸的作用为:
①刺激气孔关闭(缺水逆境等促进ABA合成)。
②抑制枝条生长但不对根生长产生抑制,甚至能够促进根生长。
③诱导种子合成贮存蛋白。
④抵消由赤霉素诱导的a-淀粉酶生成。
⑤诱导及维持种子和芽的休眠。
⑥受伤反应时诱导更多的蛋白酶抑制物的基因表达。
⑦促进光合产物向发育中的种子运送。
乙烯的作用
乙烯对植物的作用可以分为:
①促进休眠的打破。
②促进枝条和根的分化。
③促进侧生根的分化。
④增进叶片和果实离层形成。
⑤促进凤梨科植物开花。
⑥诱导雌雄异花植物的雌花形成。
⑦促进开花。
⑧促成叶片和花的老化。
⑨增进果实成熟。
参考文献
陈晓亚,汤章城. 植物生理与分子生物学(第三版),高等教育出版社,2007
Hua J, Meyerowitz E M. 1998. Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell, 94: 261-27
Bishop g J, Koncz C. 2002. Brassinosteroids and Plant Steroid Hormone Signaling. Plant cell: S97-S110
Weijers D, Jurgens G. 2004. Funneling auxin action: specificity in signal transduction. Curr Opin Plant Biol, 7: 687-693
Wang ZY, He jX. 2004. Brassinosteroid signal transduction-choices of signals and receptors. Trends Plant Sciense, 9: 91-96
Leyser O. 2005. Auxin Distribution and Plant Pattern Formation: How Many Angels Can Dance on the point of Pin. Cell, 121: 819-822
Jones AM, Im K H, Savka M A, et al. 1998. Auxin-Dependent Cell Expansion Mediated by Overexpressed Auxin-Binding Protein 1. Science, 282:1114-1117

植物提取物百科 全球最大的植物提取物中文网 stephenture@qq.com
Copyright © 2020-2024 zwwiki.Cn All Rights Reserved